Inequality for norms of matrix producted with projection
Suppose we have an arbitrary \(m\)-by-\(n\) matrix \(M\) and any subspaces \(A\subseteq B\) in \(n\)-dim. Let \(P_{A,B}\) denote the projection matrix to \(A,B\) respectively. We want to compare the norms of \(MP_A\) and \(MP_B\) that are related to the singular values.
First and most obvious, the operator norm (induced by some arbitrary vector norm):
\[\begin{align*} \|MP_A\|_{op} \equiv \sup_{x\in A,\|x\|=1}\|Mx\| \leq \|MP_B\|_{op}. \end{align*}\]Second, the Frobenius norm, observe \(MP_A=MP_BP_A\):
\[\begin{align*} \|MP_A\|_F^2 &= \|(MP_BP_A)^T\|_F^2\\ &= \|P_A^TP_B^TM^T\|_F^2\\ &\leq \|P_A^T\|_{op}\|P_B^TM^T\|_F^2\\ &=\|MP_B\|_F^2\quad\quad\quad\text{when $\|P_A^T\|_{op}=\|P_A\|_{op}=1$, i.e. $A$ is not null space} \end{align*}\]Third, the nuclear norm follows immediately from the above observation:
\[\begin{align*} \|MP_A\|_* = \|MP_BP_A\|_* \leq \|MP_B\|_* \end{align*}\]since \(\|QV\|_*=\sum_i\sigma_i(QV)\leq \sum_i\sigma_i(Q)\|V\|_{op} = \|Q\|_*\|P\|_{op}\) where operator norm gives the largest singular value.