Yuxiao Wen

New York, NY, 10036 • (347) 833-8643 • yw3210@nyu.edu • yw99.github.io

NEW YORK UNIVERSITY	New York, NY
Ph.D. in Computer Science	Expected 2026
Co-advised by Yanjun Han and Zhengyuan Zhou	
GPA: 3.89/4.0; recipient of MacCracken fellowship	
B.A.s in Honors Mathematics, Computer Science	May 2021
GPA: 3.88/4.0; magna cum laude, outstanding performance award (2 per year), Dean's List	
RESEARCH EXPERIENCE	
Courant Institute of Mathematical Sciences, New York University	New York, NY
о ,	ay 2023 - Present
• Developed the first regret lower bound for contextual bandits that evolve with the number	
• Developed tight upper bounds for some classes of contextual bandits, e.g. transitively clo graphs that are widely applied in auctions and inventory control.	osed feedback
 Proved a bottleneck structure in the learned representations for deep CNNs. 	
Research Assistant in Scientific Machine Learning May	2020 - May 2023
• Fitted neural networks to approximate PDE solutions in Python and JAX; tested >5,000 h	
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy observed. 	nyper-parameters. s to <0.1% error, l JAX.
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE 	hyper-parameters. to <0.1% error, JAX. servations.
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. Software Development Engineer Intern 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021 VS coral service.
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. Software Development Engineer Intern June Integrated back-end search in AWS S3 and results delivery to front-end with Java and AW 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021 VS coral service. search results.
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. Software Development Engineer Intern Integrated back-end search in AWS S3 and results delivery to front-end with Java and AW Implemented CSS, HTML, JavaScript for 5 website pages that call, retrieve, and display 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021 VS coral service. search results.
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. Software Development Engineer Intern Integrated back-end search in AWS S3 and results delivery to front-end with Java and AW Implemented CSS, HTML, JavaScript for 5 website pages that call, retrieve, and display Developed a Java parser for 20+ features to build SQL queries from users' inputs in the set Amazon Web Services, Inc. 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021 VS coral service. search results. earch prompt.
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. Software Development Engineer Intern June Integrated back-end search in AWS S3 and results delivery to front-end with Java and AW Implemented CSS, HTML, JavaScript for 5 website pages that call, retrieve, and display Developed a Java parser for 20+ features to build SQL queries from users' inputs in the set Amazon Web Services, Inc. Software Development Engineer Intern June Designed a Search feature workflow for the AWS data warehouse website (for internal uses) 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021 VS coral service. search results. earch prompt. Seattle, WA e 2020 - Aug 2020 se) and created a
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. Software Development Engineer Intern June Integrated back-end search in AWS S3 and results delivery to front-end with Java and AV Implemented CSS, HTML, JavaScript for 5 website pages that call, retrieve, and display Developed a Java parser for 20+ features to build SQL queries from users' inputs in the set Amazon Web Services, Inc. Software Development Engineer Intern June Designed a Search feature workflow for the AWS data warehouse website (for internal us comprehensive software design document for the Search workflow in AWS internal Wiki 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021 VS coral service. search results. earch prompt. Seattle, WA e 2020 - Aug 2020 se) and created a
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. Software Development Engineer Intern Integrated back-end search in AWS S3 and results delivery to front-end with Java and AV Implemented CSS, HTML, JavaScript for 5 website pages that call, retrieve, and display Developed a Java parser for 20+ features to build SQL queries from users' inputs in the st Amazon Web Services, Inc. Software Development Engineer Intern June Designed a Search feature workflow for the AWS data warehouse website (for internal us comprehensive software design document for the Search workflow in AWS internal Wiki Automated data cleaning process and data migration in Java for ~10,000 data files into JS 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021 VS coral service. search results. earch prompt. Seattle, WA e 2020 - Aug 2020 se) and created a SON format.
 Proposed a novel active learning method to approximate 8-dimensional dynamic systems which is otherwise computationally impossible and will give >100% error, in Python and Developed theoretical analysis for inferring operators of dynamic systems from noisy obs WORK EXPERIENCE Amazon Web Services, Inc. Software Development Engineer Intern June Integrated back-end search in AWS S3 and results delivery to front-end with Java and AV Implemented CSS, HTML, JavaScript for 5 website pages that call, retrieve, and display Developed a Java parser for 20+ features to build SQL queries from users' inputs in the set Amazon Web Services, Inc. Software Development Engineer Intern June Designed a Search feature workflow for the AWS data warehouse website (for internal us comprehensive software design document for the Search workflow in AWS internal Wiki 	hyper-parameters. to <0.1% error, JAX. servations. Seattle, WA e 2021 - Aug 2021 VS coral service. search results. earch prompt. Seattle, WA e 2020 - Aug 2020 se) and created a SON format.

Tools: Apache Subversion (SVN), Git, AWS tools, Visual Studio Code, Mac OS X tools

COURSE PROJECTS

Distributed Hash Table Protocols under Churn in P2P Networks

- Evaluated the performance of Kademlia protocol under various churn rates with a Java-based simulator.
- Comprehensively studied the impact of 20 churn rates on 4 network sizes and 10 protocol parameters.

Survey on The Law of Robustness in Deep Learning

2023

• Reviewed and summarized 47 references on the law of robustness and 5 related topics in a 12-page paper.

2020

Log-Regression Model of Weather Influence on Business Revenues

- Modeled the influence of 5 weather metrics on the quarter sales of 7 industries via a log cubic regression.
- Fitted the model with 3 real-world datasets over 7 years and achieved 1.2% relative error on testing.
- Preprocessed 3 datasets (total ~60MB) into a unified format via MapReduce in Java and queried via SQL.

PUBLICATIONS

- [1] Y. Wen, Y. Han, Z. Zhou. Stochastic contextual bandits with graph feedback: from independence number to MAS number. *submitted*, 2024.
- [2] Y. Wen, A. Jacot. Which Frequencies do CNNs Need? Emergent Bottleneck Structure in Feature Learning. *submitted*, 2024.
- [3] <u>Y. Wen</u>, E. Vanden-Eijnden, B. Peherstorfer. Coupling parameter and particle dynamics for adaptive sampling in Neural Galerkin schemes. *submitted*, 2023.
- [4] W.I.T. Uy, Y. Wang, Y. Wen, and B. Peherstorfer. Active operator inference for learning low-dimensional dynamical-system models from noisy data. SIAM Journal on Scientific Computing, 2023.

TALKS

[1] Minisymposium at SIAM Conference on Computational Science and Engineering, *Adaptive Sampling for Efficiently Training Models of Nonlinear Latent Dynamics*, Amsterdam, the Netherlands, 2023.

TEACHING

- [1] DS-GA 3001: Applied Statistics, Fall 2023
- [2] MATH-UA 133: Math for Econ III, Spring 2024